Recombinant Human Insulin-like growth factor 1 receptor(IGF1R),partial

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)

Recombinant Human Insulin-like growth factor 1 receptor(IGF1R),partial

CSB-EP011087HUa0-GB
Regular price
$765.72 CAD
Sale price
$765.72 CAD
Regular price
Sold out
Unit price
per 
Shipping calculated at checkout.

Size: 200ug. Other sizes are also available. Please Inquire.

In Stock: No

Lead time: 10-20 working days

Research Topic: Signal Transduction

Uniprot ID: P08069

Gene Names: IGF1R

Organism: Homo sapiens (Human)

AA Sequence: YNITDPEELETEYPFFESRVDNKERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMPAEGADDIPGPVTWEPRPENSIFLKWPEPENPNGLILMYEIKYGSQVEDQRECVSRQEYRKYGGAKLNRLNPGNYTARIQATSLSGNGSWTDPVFFYVQAKTGYE

Expression Region: 763-931aa

Sequence Info: Partial

Source: E.coli

Tag Info: N-terminal 6xHis-tagged

MW: 23.4 kDa

Alternative Name(s): Insulin-like growth factor I receptor ;IGF-I receptor; CD221

Relevance: Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85KDA regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R.When present in a hybrid receptor with INSR, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.

Reference: Nagase T., Kikuno R.F., Yamakawa H., Ohara O. NIEHS SNPs programAnalysis of the DNA sequence and duplication history of human chromosome 15.Zody M.C., Garber M., Sharpe T., Young S.K., Rowen L., O'Neill K., Whittaker C.A., Kamal M., Chang J.L., Cuomo C.A., Dewar K., FitzGerald M.G., Kodira C.D., Madan A., Qin S., Yang X., Abbasi N., Abouelleil A. , Arachchi H.M., Baradarani L., Birditt B., Bloom S., Bloom T., Borowsky M.L., Burke J., Butler J., Cook A., DeArellano K., DeCaprio D., Dorris L. III, Dors M., Eichler E.E., Engels R., Fahey J., Fleetwood P., Friedman C., Gearin G., Hall J.L., Hensley G., Johnson E., Jones C., Kamat A., Kaur A., Locke D.P., Madan A., Munson G., Jaffe D.B., Lui A., Macdonald P., Mauceli E., Naylor J.W., Nesbitt R., Nicol R., O'Leary S.B., Ratcliffe A., Rounsley S., She X., Sneddon K.M.B., Stewart S., Sougnez C., Stone S.M., Topham K., Vincent D., Wang S., Zimmer A.R., Birren B.W., Hood L., Lander E.S., Nusbaum C.Nature 440:671-675(2006)

Purity: Greater than 90% as determined by SDS-PAGE.

Storage Buffer: Tris-based buffer,50% glycerol

Storage: The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself. Generally, the shelf life of liquid form is 6 months at -20℃/-80℃. The shelf life of lyophilized form is 12 months at -20℃/-80℃.

Notes: Repeated freezing and thawing is not recommended. Store working aliquots at 4℃ for up to one week.

Your list is ready to share