Size :50ul
Clone Number:2H2
Aliases:Microprocessor complex subunit DGCR8, DiGeorge syndrome critical region 8, DGCR8, C22orf12, DGCRK6, LP4941
Product Type:Recombinant Antibody
Immunogen Species:Human
UniProt ID:Q8WYQ5
Immunogen:A synthesized peptide derived from human DGCR8
Raised in:
Species Reactivity:Human
Tested Applications:ELISA, WB; Recommended dilution: WB:1:500-1:5000
Background:Component of the microprocessor complex that acts as a RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DGCR8 function as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11 bp away form the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs (PubMed:26027739, PubMed:26748718). The heme-bound DGCR8 dimer binds pri-miRNAs as a cooperative trimer (of dimers) and is active in triggering pri-miRNA cleavage, whereas the heme-free DGCR8 monomer binds pri-miRNAs as a dimer and is much less active. Both double-stranded and single-stranded regions of a pri-miRNA are required for its binding (PubMed:15531877, PubMed:15574589, PubMed:15589161, PubMed:16751099, PubMed:16906129, PubMed:16963499, PubMed:17159994). Specifically recognizes and binds N6-methyladenosine (m6A)-containing pri-miRNAs, a modification required for pri-miRNAs processing (PubMed:25799998). Involved in the silencing of embryonic stem cell self-renewal (By similarity).
Clonality:Monoclonal
Isotype:Rabbit IgG
Purification Method:Affinity-chromatography
Conjugate:Non-conjugated
Buffer:Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Form:Liquid
Stroage:Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
Target Names:DGCR8
Research Areas:Epigenetics and Nuclear Signaling